Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Natalia V. Kuratieva,* Marina I. Naumova, Dmitry Yu. Naumov and Nina V. Podberezskaya

Institute of Inorganic Chemistry, SB Russian Academy of Sciences, Academition Lavrentiev Avenue 3, Novosibirsk 90, 630090 Russia

Correspondence e-mail: kuratieva@ngs.ru

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(P-O) = 0.002 \text{ Å}$ R factor = 0.021 wR factor = 0.048 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \bigcirc 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

A new polymorph of hexaaquamagnesium(II) bis(hypophosphite)

In a new polymorph of hexaaquamagnesium(II) bis-(hypophosphite), $[Mg(H_2O)_6](H_2PO_2)_2$, the planes of *trans* water molecules forming the octahedral coordination sphere of the Mg atoms are in a staggered conformation. The magnesium(II) cations are in a pseudo-face-centered cubic arrangement, with $a \simeq 10.294$ Å and tetrahedral cavities are occupied by P atoms. Hypophosphite anions are hydrogen bonded to the coordinated water molecules.

Comment

Studies of hexaaquametal(II) bis(hypophosphites) have been reported earlier (Ferrari & Colla, 1937; Pédrazuela *et al.*, 1953; Galigné & Dumas, 1973; Kuratieva *et al.*, 2002, 2003). The structure of a new polymorph, (I), of $[Mg(H_2O)_6](H_2PO_2)_2$ is described here; this is different from that previously reported (Galigné & Dumas, 1973) but similar to that of $[Mg(H_2O)_6](ClO_2)_2$ (Marsh, 1991), excluding the H atoms present in the hypophosphite anion. The packing of the Mg^{II} cations, P and O atoms of hypophosphite anions is the same as in the structure of $[Ni(H_2O)_6](H_2PO_2)_2$ and Cl and O atoms in $[Mg(H_2O)_6](ClO_2)_2$. The magnesium cations are in a pseudoface-centered cubic arrangement, with $a \simeq 10.294$ Å (10.371 Å in $[Mg(H_2O)_6](ClO_2)_2$) and tetrahedral cavities are occupied by P atoms.

 $\begin{bmatrix} 0 \\ H_2 \\ H_2$

The first coordination sphere of the Mg^{II} cation consists of six water molecules forming a slightly distorted octahedron and appearing in only one type of orientation. Planes of transcoordinated water molecules are in a staggered conformation, as in $[Ni(H_2O)_6](H_2PO_2)_2$ (Kuratieva et al., 2003) and [Mg(H₂O)₆](ClO₂)₂ (Marsh, 1991), but different from [Mg(H₂O)₆](H₂PO₂)₂ (Galigné & Dumas, 1973), [Co(H₂O)₆]-(H₂PO₂)₂, and [Co_{0.5}Ni_{0.5}(H₂O)₆](H₂PO₂)₂ (Kuratieva et al., 2002), in which a pair of trans water molecules is in an eclipsed conformation. The six coordinated water molecules occur in two groups. The two molecules corresponding to the O1Watoms [Mg-O 2.042 (3) Å] have their planes perpendicular to the basal plane formed by the four other molecules and the Mg^{II} cation. The angle between the normal to the planes of these water molecules is 90.0° {as in $[Mg(H_2O)_6](ClO_2)_2$ }. The four molecules corresponding to the O2W atoms [Mg-O 2.060(2) Å] have their planes perpendicular to the basal plane; the angle between the normal to the planes of trans

Received 28 March 2003 Accepted 3 April 2003 Online 23 May 2003

Figure 1

The environment of the hexaaquamagnesium(II) cation in relation to the hypophosphite anions. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii [symmetry codes: (i) $y - \frac{1}{2}, 1 - x, \frac{1}{2} - z$; (ii) $\frac{1}{2} - x, \frac{3}{2} - y, z$; (iii) $1 - y, \frac{1}{2} + x, \frac{1}{2} - z$; (iv) $\frac{1}{2} - y, x, z - \frac{1}{2}$].

Figure 2

The environment of the hypophosphite anion of $[Mg(H_2O)_6](H_2PO_2)_2$ in relation to the hexaaquamagnesium(II) cations, viewed along [110]. Thick dashed lines indicate the O-H···O-P hydrogen bonds and thin dashed lines indicate the OW···H-P contacts. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

coordinated molecules of this type is $83.3 (2)^{\circ} \{88.3 (3)^{\circ} \text{ in }$ $[Mg(H_2O)_6](ClO_2)_2)$.

The second coordination sphere of the Mg^{II} cation consists of eight hypophosphite anions, which are hydrogen bonded to water molecules. Although the packing of Mg^{II} cations and P atoms is similar, the orientation of hypophosphite anions differs from that in [Mg(H₂O)₆](H₂PO₂)₂ (Galigné & Dumas, 1973), [Co(H₂O)₆](H₂PO₂)₂, and [Co_{0.5}Ni_{0.5}(H₂O)₆](H₂PO₂)₂ (Kuratieva et al., 2002), and resembles that in $[Ni(H_2O)_6](H_2PO_2)_2$ (Kuratieva *et al.*, 2003) and $[Mg(H_2O)_6]$ -(ClO₂)₂ (Marsh, 1991). The geometry of the hypophosphite anion remains practically the same as in previous structures (Naumov et al., 2001, 2002; Kuratieva et al., 2002, 2003) (Table 1). Each O atom of the hypophosphite anion is hydrogen bonded to three water molecules from different complex cations (Table 2; thick dashed lines in Fig. 2). Each H atom is surrounded by three water molecules from other complex cations; these H atoms are situated directly above the centers of the triangles formed by the O atoms of these three water molecules (thin dashed lines in Fig. 2). The average $P-H \cdots O$ contact is 2.87 (2) Å. The environment of the hypophosphite anion is similar to that found in the other hexaaquametal(II) bis(hypophosphites) listed above.

Experimental

[Mg(H₂O)₆](H₂PO₂)₂ was synthesized by slow evaporation of an aqueous solution of magnesium(II) hypophosphite, prepared by adding a solution of calcium(II) hypophosphite, Ca(H₂PO₂)₂, to a solution of magnesium(II) sulfate heptahydrate, MgSO₄·7H₂O. The reaction mixture was stored at room temperature for one week in air.

Crystal data

$Mg(H_2O)_6:2H_2O_2P$ $M_r = 262.38$ Tetragonal, $P4_2/nmc$ $a = 7.2187 (9) Å$ $c = 10.4639 (13) Å$ $V = 545.27 (12) Å^3$ $Z = 2$ $D_r = 1.598 Mg m^{-3}$	Mo K α radiation Cell parameters from 22 reflections $\theta = 11.7-14.9^{\circ}$ $\mu = 0.48 \text{ mm}^{-1}$ T = 295 (2) K Prism, colorless 0.24 \times 0.20 \times 0.16 mm
$D_x = 1.556$ Wg III Data collection	0.24 × 0.20 × 0.10 mm
Enraf-Nonius CAD-4 diffractometer $2\theta/\theta$ scans Absorption correction: empirical (CADDAT; Enraf-Nonius, 1989) $T_{min} = 0.904$, $T_{max} = 0.925$ 809 measured reflections 427 independent reflections 238 reflections with $I > 2\sigma(I)$	$\begin{aligned} R_{\text{int}} &= 0.038\\ \theta_{\text{max}} &= 29.1^{\circ}\\ h &= 0 \rightarrow 9\\ k &= 0 \rightarrow 9\\ l &= 0 \rightarrow 14\\ 3 \text{ standard reflections}\\ \text{frequency: 60 min}\\ \text{intensity decay: none} \end{aligned}$
Refinement	- 2. 2
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0118P)^2]$

 $R[F^2 > 2\sigma(F^2)] = 0.021$ where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.048$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$ S = 0.74 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 427 reflections 33 parameters Extinction correction: SHELXL97 All H-atom parameters refined Extinction coefficient: 0.016 (2)

Table 1

Selected geometric parameters (Å, °).

-			
O2W-Mg1-O2W ⁱⁱ	180.0	$H1^{v}-P1-H1$	105.2 (15)
O1W-Mg1-O2W	90.0	$O1-P1-O1^{v}$	116.08 (14)
$O1W^i - Mg1 - O1W$	180.0	$O2W-Mg1-O2W^{i}$	90.0
Mg1–O2W	2.060 (2)	P1-H1	1.356 (19)
	2.042 (5)	11-01	1.5000 (10)
$Ma1 \cap W$	2042(3)	P1 01	1 5088 (18)

Symmetry codes: (i) $y - \frac{1}{2}$, 1 - x, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $\frac{3}{2} - y$, z; (v) $\frac{1}{2} - x$, $\frac{1}{2} - y$, z.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1W - H1W \cdots O1^{iii} \\ O2W - H2W \cdots O1^{iv} \end{array}$	0.81 (2)	1.94 (2)	2.750 (2)	177 (3)
	0.762 (14)	2.006 (14)	2.7662 (14)	175 (2)

Symmetry codes: (iii) $1 - y, \frac{1}{2} + x, \frac{1}{2} - z$; (iv) $\frac{1}{2} - y, x, z - \frac{1}{2}$.

The H atoms were located from a difference electron-density map and refined without constraints.

Data collection: *CD4CA*0 (Enraf–Nonius, 1989); cell refinement: *CD4CA*0; data reduction: *CD4CA*0; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

The authors are grateful to Dr A. V. Virovets for helpful comments.

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf–Nonius (1989). *CAD-4 Software CD4CA*0 (Version 5.0) and *CADDAT* (Version 5.1). Enraf–Nonius, Delft, The Netherlands.
- Ferrari, A. & Colla, C. (1937). Gazz. Chim. Ital. 67, 294-301.
- Galigné. J. L. & Dumas, Y. (1973). Acta Cryst. B29, 1115-1119.
- Kuratieva, N. V., Naumova, M. I. & Naumov, D. Yu. (2002). Acta Cryst. C58, i129–i131.
- Kuratieva, N. V., Naumova, M. I., Naumov, D. Yu. & Podberezskaya, N. V. (2003). Acta Cryst. C59, i1–i3.
- Marsh, R. E. (1991). Acta Cryst. C47, 1775.
- Naumov, D. Yu., Naumova, M. I., Kuratieva, N. V., Boldyreva, E. V. & Howard, J. A. K. (2002). Acta Cryst. C58, i55–i60.
- Naumov, D. Yu., Yufit, D. S., Boldyreva, E. V. & Howard, J. A. K. (2001). Acta Cryst. C57, 790–792.
- Pédrazuela, R., García-Blanco, S. & Rivoir, L. (1953). Ann. Real Soc. Esp. Fis. Quim. 59, 255–262.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.